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Introducing

• Laurens van den Oever

CEO of Xopus BV

• Xopus BV

Friendly XML editor

Since 2007, 10 people

• Q42 Internet BV

Friendly internet technology

Since 2000, 25 people



The M&M Game

Rules:

• Every slide with M&M’s contains a question

• The first correct answer is rewarded with a baglet of M&M’s!



Xopus Overview

• Browser based XML editor

• Non-technical target audience

• MVC

– XML

– XSL

– XSD

• 100% Javascript & XSL



Demo

Recipe Demo

http://localhost/Xopus 3.2.14/xopus/xopus.html


Question

Why do we write our software in Javascript?



Answer

Javascript does not require a client side install.



XSL Explained

• XSL is a transformation from one XML document into another

• Xopus: customer domain specific XML => XHTML

• The V in MVC



XSL Example: XML Input

<recipe xml:lang="en-US">

<title>Traditional Christmas Ham</title>

<author>Joanna</author>

<ingredients>

<ingredient> ... </ingredient>

<ingredient> ... </ingredient>

...

</recipe>



XSL Example: XSL Transform

<xsl:template match="author">

<div class="author">

<span class="by">by </span>

<span class="author-name">

<xsl:value-of select="." />    

</span>

</div>

</xsl:template>



XSL Example: HTML Output

<div class="author">

<span class="by">by </span>

<span class="author-name">Joanna</span>

</div>
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Xopus XSL Pipeline

• Executed after every change

• Performance is critical:

• Need to support large XML documents

Optimizing maximum document size

Target: 10MB (99,9% of XML documents)

User experience: Great Unacceptable

Startup <1s >10 s

Enter <150 ms >1000 ms

Typing <15 ms >50 ms



Version 1: Full XSL

• Entire XML is transformed

• XHTML output replaces entire HTML DOM

• Full support of XSL standard

• Performance proportional to document size



Version 1: Full XSL

• Performance for 100KB document:
(P4 3GHz, 3GB, WinXPSP3, IE7, MSXML6)

XSL (ms) Renderer (ms) Total (ms)

t = 0 400 700 1100

t > 0 300 700 1000



Question

What is the best way to minimize the runtime of an algorithm?



Answer

Don’t run it.



Xopus XSL Pipeline
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Version 2: Differential Rendering
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Question

Which problem is not solved by differential rendering?



Answer

The first rendering (t = 0) is still slow.

Because differential rendering can only render changes.



Version 2: Differential Rendering

• Entire XML is transformed

• XHTML output is compared with previous XHTML output

• Changes are applied to HTML DOM

• Full support of XSL standard

• Performance still proportional to document size



Version 2: Differential Rendering

Performance for 100KB document:

• Full XSL:

• Differential Rendering:

2x improvement!

(ms) XSL Diff Updater Total

t > 0 300 180 10 490

(ms) XSL Renderer Total

t > 0 300 700 1000



Version 2: Differential Rendering
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XML 
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Version 3: Partial XSL
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Question

Which bonus do we get from this architecture?



Answer

We no longer need to diff since we now only transform changes.



XML 

Preprocessor 

Version 3: Partial XSL
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Version 3: Partial XSL

• Changes are tagged in XML

• XSL only transforms changes

• Changes are applied to HTML DOM

• Limited support of XSL standard

• Performance proportional to changed fragment size



Version 3: Partial XSL

Performance for 100KB document:

• Differential Rendering:

• Partial XSL:

25x improvement!

(ms) Pre XSL Updater Total

t > 0 0 10 10 20

(ms) XSL Diff Updater Total

t > 0 300 180 10 490



Demo

<xsl:template match="paragraph">

<xsl:variable name="l" 

select="string-length(.) mod 25"/>

...

</xsl:template> 



Demo

<xsl:template match="paragraph">

<xsl:variable name="l" .../>

<xsl:variable name="color">

rgb(<xsl:value-of select="10 * $l"/>,    

<xsl:value-of select="255 - (5 * $l)"/>, 

<xsl:value-of select="255 - (10 * $l)"/>)

</xsl:variable>

...

</xsl:template> 



Demo

<xsl:template match="paragraph">

<xsl:variable name="l" .../>

<xsl:variable name="color">

...

</xsl:variable>

<p style="background: {$color}">

<xsl:apply-templates select="node()"/>  

[<xsl:value-of select="string-length(.)"/>]

</p>

</xsl:template> 



Demo

Partial XSL Demo

• 100KB XML document

• XSL executed for every keystroke

• Ugly

http://localhost/Xopus 3.2.14/xopus/xopus.html
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Version 3: Partial XSL (t > 0)
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Version 3: Partial XSL (t = 0)
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Version 4: Incremental XSL
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Version 4: Incremental XSL

• XSL is compiled into DOM updating Javascript functions

• Processing is paused when screen is full

• Scrolling and editing continues processing

• Entire XML is downloaded and parsed

• Currently limited support of XSL standard 

(full support is feasible, possibly better than 3rd party)



Version 4: Incremental XSL

Performance for 100KB document:

• Partial XSL:

• Incremental XSL:

5x startup improvement!

(ms) Total

t = 0 220

t > 0 10

(ms) Pre XSL Updater Total

t = 0 0 400 700 1100

t > 0 0 10 10 20



Version 4: Incremental XSL

Performance for 10MB document:

• 100KB:

• 10MB:

Sub linear scaling!

(ms) Total

t = 0 1500

t > 0 10

(ms) Total

t = 0 220

t > 0 10



Demo

Incremental XSL Demo

• Proof of Concept

• 10MB XML document

• No editing yet

http://macosxp/research/ngxsl/axp/


Conclusions

• Maximal document size increased from 8KB to 10MB

• Network speed is now main bottleneck

With incremental XSL performance is no longer an issue 



Questions?

More information:

http://xopus.com

Laurens van den Oever

laurens@xopus.com

BTW: We’re looking for new developers!

http://xopus.com/
mailto:laurens@xopus.com

