
Optimizing the

Xopus XSL pipeline

November 22nd 2008

Laurens van den Oever

Introducing

• Laurens van den Oever

CEO of Xopus BV

• Xopus BV

Friendly XML editor

Since 2007, 10 people

• Q42 Internet BV

Friendly internet technology

Since 2000, 25 people

The M&M Game

Rules:

• Every slide with M&M’s contains a question

• The first correct answer is rewarded with a baglet of M&M’s!

Xopus Overview

• Browser based XML editor

• Non-technical target audience

• MVC

– XML

– XSL

– XSD

• 100% Javascript & XSL

Demo

Recipe Demo

http://localhost/Xopus 3.2.14/xopus/xopus.html

Question

Why do we write our software in Javascript?

Answer

Javascript does not require a client side install.

XSL Explained

• XSL is a transformation from one XML document into another

• Xopus: customer domain specific XML => XHTML

• The V in MVC

XSL Example: XML Input

<recipe xml:lang="en-US">

<title>Traditional Christmas Ham</title>

<author>Joanna</author>

<ingredients>

<ingredient> ... </ingredient>

<ingredient> ... </ingredient>

...

</recipe>

XSL Example: XSL Transform

<xsl:template match="author">

<div class="author">

by

<xsl:value-of select="." />

</div>

</xsl:template>

XSL Example: HTML Output

<div class="author">

by

Joanna

</div>

Xopus XSL Pipeline

XSL Processor Renderer

Changes

XSL

XML
XHTML

Output

HTML

DOM

Xopus XSL Pipeline

• Executed after every change

• Performance is critical:

• Need to support large XML documents

Optimizing maximum document size

Target: 10MB (99,9% of XML documents)

User experience: Great Unacceptable

Startup <1s >10 s

Enter <150 ms >1000 ms

Typing <15 ms >50 ms

Version 1: Full XSL

• Entire XML is transformed

• XHTML output replaces entire HTML DOM

• Full support of XSL standard

• Performance proportional to document size

Version 1: Full XSL

• Performance for 100KB document:
(P4 3GHz, 3GB, WinXPSP3, IE7, MSXML6)

XSL (ms) Renderer (ms) Total (ms)

t = 0 400 700 1100

t > 0 300 700 1000

Question

What is the best way to minimize the runtime of an algorithm?

Answer

Don’t run it.

Xopus XSL Pipeline

XSL Processor Renderer

Changes

XSL

XML
XHTML

Output

HTML

DOM

300 ms 700 ms

Version 2: Differential Rendering

XSL Processor Updater

Changes

Changes

DiffXSL

XML

XHTML

(t-1)

XHTML

(t)

HTML

DOM

Changes

Question

Which problem is not solved by differential rendering?

Answer

The first rendering (t = 0) is still slow.

Because differential rendering can only render changes.

Version 2: Differential Rendering

• Entire XML is transformed

• XHTML output is compared with previous XHTML output

• Changes are applied to HTML DOM

• Full support of XSL standard

• Performance still proportional to document size

Version 2: Differential Rendering

Performance for 100KB document:

• Full XSL:

• Differential Rendering:

2x improvement!

(ms) XSL Diff Updater Total

t > 0 300 180 10 490

(ms) XSL Renderer Total

t > 0 300 700 1000

Version 2: Differential Rendering

XSL Processor Updater

Changes

Changes

DiffXSL

XML

XHTML

(t-1)

XHTML

(t)

HTML

DOM

300 ms 10 ms

180 ms

Changes

XML

Preprocessor

Version 3: Partial XSL

XSL Processor

Changes

Changes

XSL

Preprocessor
XSL’XSL

XML ?

Question

Which bonus do we get from this architecture?

Answer

We no longer need to diff since we now only transform changes.

XML

Preprocessor

Version 3: Partial XSL

XSL Processor Updater

Changes

Changes

XSL

Preprocessor
XSL’XSL

HTML

DOM
XML

Changes Changes

Version 3: Partial XSL

• Changes are tagged in XML

• XSL only transforms changes

• Changes are applied to HTML DOM

• Limited support of XSL standard

• Performance proportional to changed fragment size

Version 3: Partial XSL

Performance for 100KB document:

• Differential Rendering:

• Partial XSL:

25x improvement!

(ms) Pre XSL Updater Total

t > 0 0 10 10 20

(ms) XSL Diff Updater Total

t > 0 300 180 10 490

Demo

<xsl:template match="paragraph">

<xsl:variable name="l"

select="string-length(.) mod 25"/>

...

</xsl:template>

Demo

<xsl:template match="paragraph">

<xsl:variable name="l" .../>

<xsl:variable name="color">

rgb(<xsl:value-of select="10 * $l"/>,

<xsl:value-of select="255 - (5 * $l)"/>,

<xsl:value-of select="255 - (10 * $l)"/>)

</xsl:variable>

...

</xsl:template>

Demo

<xsl:template match="paragraph">

<xsl:variable name="l" .../>

<xsl:variable name="color">

...

</xsl:variable>

<p style="background: {$color}">

<xsl:apply-templates select="node()"/>

[<xsl:value-of select="string-length(.)"/>]

</p>

</xsl:template>

Demo

Partial XSL Demo

• 100KB XML document

• XSL executed for every keystroke

• Ugly

http://localhost/Xopus 3.2.14/xopus/xopus.html

XML

Preprocessor

Version 3: Partial XSL (t > 0)

XSL Processor Updater

Changes

Changes

XSL

Preprocessor
XSL’XSL

HTML

DOM
XML

Changes Changes0 ms 10 ms 10 ms

XML

Preprocessor

Version 3: Partial XSL (t = 0)

XSL Processor Updater

Changes

Changes

XSL

Preprocessor
XSL’XSL

HTML

DOM
XML

Changes Changes0 ms 400 ms 700 ms

Version 4: Incremental XSL

Compiled XSL

Changes

XSL Compiler

Node stream Node stream

Play / Pause

XSL

XML
HTML

DOM

Version 4: Incremental XSL

• XSL is compiled into DOM updating Javascript functions

• Processing is paused when screen is full

• Scrolling and editing continues processing

• Entire XML is downloaded and parsed

• Currently limited support of XSL standard

(full support is feasible, possibly better than 3rd party)

Version 4: Incremental XSL

Performance for 100KB document:

• Partial XSL:

• Incremental XSL:

5x startup improvement!

(ms) Total

t = 0 220

t > 0 10

(ms) Pre XSL Updater Total

t = 0 0 400 700 1100

t > 0 0 10 10 20

Version 4: Incremental XSL

Performance for 10MB document:

• 100KB:

• 10MB:

Sub linear scaling!

(ms) Total

t = 0 1500

t > 0 10

(ms) Total

t = 0 220

t > 0 10

Demo

Incremental XSL Demo

• Proof of Concept

• 10MB XML document

• No editing yet

http://macosxp/research/ngxsl/axp/

Conclusions

• Maximal document size increased from 8KB to 10MB

• Network speed is now main bottleneck

With incremental XSL performance is no longer an issue

Questions?

More information:

http://xopus.com

Laurens van den Oever

laurens@xopus.com

BTW: We’re looking for new developers!

http://xopus.com/
mailto:laurens@xopus.com

