
NWERC 2008
The 2008 ACM Northwestern Europe Programming Contest

Utrecht University, The Netherlands

The Problem Set

A Equilibrium Mobile
B Proving Equivalences
C Cat vs. Dog
D Disgruntled Judge
E Easy Climb
F Sculpture
G not available
H Matchsticks
I White Water Rafting
J Shuffle
K Videopoker



Almost blank page



Problem A: Equilibrium Mobile 1

A Equilibrium Mobile

A mobile is a type of kinetic sculpture constructed to take
advantage of the principle of equilibrium. It consists of a
number of rods, from which weighted objects or further rods
hang. The objects hanging from the rods balance each other,
so that the rods remain more or less horizontal. Each rod
hangs from only one string, which gives it freedom to rotate
about the string.

We consider mobiles where each rod is attached to its
string exactly in the middle, as in the figure underneath. You
are given such a configuration, but the weights on the ends
are chosen incorrectly, so that the mobile is not in equilib-
rium. Since that’s not aesthetically pleasing, you decide to change some of the weights.

3 7

6

What is the minimum number of weights that you must change in order to bring the
mobile to equilibrium? You may substitute any weight by any (possibly non-integer) weight.
For the mobile shown in the figure, equilibrium can be reached by changing the middle
weight from 7 to 3, so only 1 weight needs to changed.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with the structure of the mobile, which is a recursively defined expression of
the form:

〈expr〉 ::= 〈weight〉 | “[” 〈expr〉 “,” 〈expr〉 “]”

with 〈weight〉 a positive integer smaller than 109 indicating a weight and [〈expr〉, 〈expr〉]
indicating a rod with the two expressions at the ends of the rod. The total number of
rods in the chain from a weight to the top of the mobile will be at most 16.

Output

Per testcase:

• One line with the minimum number of weights that have to be changed.



2 Problem A: Equilibrium Mobile

Sample in- and output

Input Output

3
[[3,7],6]
40
[[2,3],[4,5]]

1
0
3



Problem B: Proving Equivalences 3

B Proving Equivalences

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

(a) A is invertible.
(b) Ax = b has exactly one solution for every n × 1 matrix b.
(c) Ax = b is consistent for every n × 1 matrix b.
(d) Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance,
one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d),
and finally that (d) implies (a). These four implications show that the four statements are
equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies
(b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d).
However, this way requires proving six implications, which is clearly a lot more work than
just proving four implications!

I have been given some similar tasks, and have already started proving some implica-
tions. Now I wonder, how many more implications do I have to prove? Can you help me
determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line containing two integers n (1 ≤ n ≤ 20 000) and m (0 ≤ m ≤ 50 000): the
number of statements and the number of implications that have already been proved.

• m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 6= s2) each, indicating that it
has been proved that statement s1 implies statement s2.

Output

Per testcase:

• One line with the minimum number of additional implications that need to be proved
in order to prove that all statements are equivalent.

Sample in- and output

Input Output

2
4 0
3 2
1 2
1 3

4
2



Almost blank page



Problem C: Cat vs. Dog 5

C Cat vs. Dog

The latest reality show has hit the TV: “Cat vs. Dog”. In this show, a bunch of cats and dogs
compete for the very prestigious BEST PET EVER title. In each episode, the cats and dogs get
to show themselves off, after which the viewers vote on which pets should stay and which
should be forced to leave the show.

Each viewer gets to cast a vote on two things: one pet which should be kept on the show,
and one pet which should be thrown out. Also, based on the universal fact that everyone is
either a cat lover (i.e. a dog hater) or a dog lover (i.e. a cat hater), it has been decided that
each vote must name exactly one cat and exactly one dog.

Ingenious as they are, the producers have decided to use an advancement procedure
which guarantees that as many viewers as possible will continue watching the show: the
pets that get to stay will be chosen so as to maximize the number of viewers who get both
their opinions satisfied. Write a program to calculate this maximum number of viewers.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with three integers c, d, v (1 ≤ c, d ≤ 100 and 0 ≤ v ≤ 500): the number of
cats, dogs, and voters.

• v lines with two pet identifiers each. The first is the pet that this voter wants to keep,
the second is the pet that this voter wants to throw out. A pet identifier starts with one
of the characters ‘C’ or ‘D’, indicating whether the pet is a cat or dog, respectively. The
remaining part of the identifier is an integer giving the number of the pet (between 1
and c for cats, and between 1 and d for dogs). So for instance, “D42” indicates dog
number 42.

Output

Per testcase:

• One line with the maximum possible number of satisfied voters for the show.

Sample in- and output

Input Output

2
1 1 2
C1 D1
D1 C1
1 2 4
C1 D1
C1 D1
C1 D2
D2 C1

1
3



Almost blank page



Problem D: Disgruntled Judge 7

D Disgruntled Judge

Once upon a time, there was an NWERC judge with a tendency to create slightly too hard
problems. As a result, his problems were never solved. As you can image, this made our
judge somewhat frustrated. This year, this frustration has culminated, and he has decided
that rather than spending a lot of time constructing a well-crafted problem, he will simply
write some insanely hard problem statement and just generate some random input and out-
put files. After all, why bother having proper test data if nobody is going to try the problem
anyway?

Thus, the judge generates a testcase by simply letting the input be a random number, and
letting the output be another random number. Formally, to generate the data set with T test
cases, the judge generates 2T random numbers x1, . . . , x2T between 0 and 10 000, and then
writes T , followed by the sequence x1, x3, x5, . . . , x2T−1 to the input file, and the sequence
x2, x4, x6, . . . , x2T to the output file.

The random number generator the judge uses is quite simple. He picks three numbers
x1, a, and b between 0 and 10 000 (inclusive), and then for i from 2 to 2T lets

xi = (a · xi−1 + b) mod 10 001.

You may have thought that such a poorly designed problem would not be used in a contest
of such high standards as NWERC. Well, you were wrong.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line containing an integer n (0 ≤ n ≤ 10 000): an input testcase.

The input file is guaranteed to be generated by the process described above.

Output

Per testcase:

• One line with an integer giving the answer for the testcase.

If there is more than one output file consistent with the input file, any one of these is accept-
able.

Sample in- and output

Input Output

3
17
822
3014

9727
1918
4110



Almost blank page



Problem E: Easy Climb 9

E Easy Climb

Somewhere in the neighborhood we have a very nice
mountain that gives a splendid view over the sur-
rounding area. There is one problem though: climb-
ing this mountain is very difficult, because of rather
large height differences. To make more people able to
climb the mountain and enjoy the view, we would like
to make the climb easier.

To do so, we will model the mountain as follows:
the mountain consists of n adjacent stacks of stones, and each of the stacks is hi high. The
successive height differences are therefore hi+1 − hi (for 1 ≤ i ≤ n − 1). We would like all
absolute values of these height differences to be smaller than or equal to some number d.

We can do this by increasing or decreasing the height of some of the stacks. The first stack
(the starting point) and the last stack (the ending point) should remain at the same height as
they are initially. Since adding and removing stones requires a lot of effort, we would like to
minimize the total number of added stones plus the total number of removed stones. What
is this minimum number?

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with two integers n (2 ≤ n ≤ 100) and d (0 ≤ d ≤ 109): the number of stacks
of stones and the maximum allowed height difference.

• One line with n integers hi (0 ≤ hi ≤ 109): the heights of the stacks.

Output

Per testcase:

• One line with the minimum number of stones that have to be added or removed or
“impossible” if it is impossible to achieve the goal.

Sample in- and output

Input Output

3
10 2
4 5 10 6 6 9 4 7 9 8
3 1
6 4 0
4 2
3 0 6 3

6
impossible
4



Almost blank page



Problem F: Sculpture 11

F Sculpture

Imagine a box, made of copper plate. Imagine a second
one, intersecting the first one, and several others, intersect-
ing each other (or not). That is how the sculptor Oto Box-
ing constructs his sculptures. In fact he does not construct
that much, he only makes the design; the actual construc-
tion is contracted out to a construction company. For the cal-
culation of the costs of construction the company needs to
know the total area of copper plate involved. Parts of a box
that are hidden in another box are not realized in copper, of
course. (Copper is quite expensive, and prices are rising.)
After construction, the total construction is plunged into a
bath of chemicals. To prevent this bath from running over,
the construction company wants to know the total volume
of the construction. Given that a construction is a collection
of boxes, you are asked to calculate the area and the volume
of the construction.

Some of Oto’s designs are connected, others are not. Either way, we want to know the
total area and the total volume. It might happen that the boxes completely enclose space that
is not included in any of the boxes (see the second example below). Because the liquid cannot
enter that space, its volume must be added to the total volume. Copper plate bordering this
space is superfluous, of course, so it does not add to the area.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with an integer n (1 ≤ n ≤ 50): the number of boxes involved.

• n lines with six positive integers x0, y0, z0, x, y, z (1 ≤ x0, y0, z0, x, y, z ≤ 500): the triple
(x0, y0, z0) is the vertex of the box with the minimum values for the coordinates and
the numbers x, y, z are the dimensions of the box (x, y and z dimension, respectively).
All dimensions are in centimeters. The sides of the boxes are always parallel to the
coordinate axes.

Output

Per testcase:

• One line with two numbers separated by single spaces: the total amount of copper
plate needed (in cm2), and the total volume (in cm3).



12 Problem F: Sculpture

Sample in- and output

Input Output

2
2
1 2 3 3 4 5
6 2 3 3 4 5
7
1 1 1 5 5 1
1 1 10 5 5 1
1 1 2 1 4 8
2 1 2 4 1 8
5 2 2 1 4 8
1 5 2 4 1 8
3 3 4 1 1 1

188 120
250 250



Problem H: Matchsticks 15

H Matchsticks

Matchsticks are ideal tools to represent numbers. A common way to represent the ten deci-
mal digits with matchsticks is the following:

This is identical to how numbers are displayed on an ordinary alarm clock. With a given
number of matchsticks you can generate a wide range of numbers. We are wondering what
the smallest and largest numbers are that can be created by using all your matchsticks.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with an integer n (2 ≤ n ≤ 100): the number of matchsticks you have.

Output

Per testcase:

• One line with the smallest and largest numbers you can create, separated by a single
space. Both numbers should be positive and contain no leading zeroes.

Sample in- and output

Input Output

4
3
6
7
15

7 7
6 111
8 711
108 7111111



Almost blank page



Problem I: White Water Rafting 17

I White Water Rafting

You have been hired by a big theme park to design a new attraction: a white water rafting
ride. You already designed the track; it is a round trip that is described by an inner and an
outer polygon. The space in between the two polygons is the track.

You still need to design the rafts, however. It has been decided that they should be
circular, so that they can spin freely along the track and increase the fun and excitement of
the ride. Besides that, they should be as big as possible to fit the maximum number of people,
but they can’t be too big, for otherwise they would get stuck somewhere on the track.

What is the maximum radius of the rafts so that they can complete the track?

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with an integer ni (3 ≤ ni ≤ 100): the number of points of the inner polygon.

• ni lines with two integers each: the coordinates of the points of the inner polygon in
consecutive order.

• One line with an integer no (3 ≤ no ≤ 100): the number of points of the outer polygon.

• no lines with two integers each: the coordinates of the points of the outer polygon in
consecutive order.

All coordinates have absolute value no larger than 1 000. The points of the polygons can be
given in either clockwise or counterclockwise order and the two polygons do not intersect
or touch themselves or each other. The outer polygon encloses the inner polygon.

Output

Per testcase:

• One line with a floating point number: the maximal radius of the white water rafts.
This number must have a relative or absolute error less than 10−6.



18 Problem I: White Water Rafting

Sample in- and output

Input Output

2
4
-5 -5
5 -5
5 5
-5 5
4
-10 -10
-10 10
10 10
10 -10
3
0 0
1 0
1 1
5
3 -3
3 3
-4 2
-1 -1
-2 -2

2.5
0.70710678



Problem J: Shuffle 19

J Shuffle

You are listening to your music collection using the shuffle function to keep the music sur-
prising. You assume that the shuffle algorithm of your music player makes a random per-
mutation of the songs in the playlist and plays the songs in that order until all songs have
been played. Then it reshuffles and starts playing the list again.

You have a history of the songs that have been played. However, your record of the
history of played songs is not complete, as you started recording songs at a certain point in
time and a number of songs might already have been played. From this history, you want to
know at how many different points in the future the next reshuffle might occur.

A potential future reshuffle position is valid if it divides the recorded history into inter-
vals of length s (the number of songs in the playlist) with the first and last interval possibly
containing less than s songs and no interval contains a specific song more than once.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with two integers s and n (1 ≤ s, n ≤ 100 000): the number of different songs
in the playlist and the number of songs in the recorded playlist history.

• One line with n space separated integers, x1, x2, . . . , xn (1 ≤ xi ≤ s): the recorded
playlist history.

Output

Per testcase:

• One line with the number of future positions the next reshuffle can be at. If the history
could not be generated by the above mentioned algorithm, output 0.

Sample in- and output

Input Output

4
4 10
3 4 4 1 3 2 1 2 3 4
6 6
6 5 4 3 2 1
3 5
3 3 1 1 1
7 3
5 7 3

1
6
0
7



Almost blank page



Problem K: Videopoker 21

K Videopoker

Videopoker is the slot machine variant of the currently immensely popular game of poker.
It is a variant on draw poker. In this game the player gets a hand consisting of five cards
randomly drawn from a standard 52-card deck. From this hand, the player may discard any
number of cards (between 0 and 5, inclusive), and change them for new cards randomly
drawn from the remainder of the deck. After that, the hand is evaluated and the player is
rewarded according to a payout structure. A common payout structure is as follows:

hand payout
one pair 1
two pair 2

three of a kind 3
straight 4

flush 5
full house 10

four of a kind 25
straight flush 100

royal flush 250

Once you know the payout structure, you can determine for a given hand which cards
you must change to maximize your expected reward. We’d like to know this expected re-
ward, given a hand.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with nine integers xi (0 ≤ xi ≤ 1 000) describing the payout structure. The
numbers are in increasing order and describe the payout for one pair, two pair, etc,
until the royal flush.

• One line with one integer n (1 ≤ n ≤ 10): the number of starting hands to follow.

• n lines, each describing a starting hand. A hand consists of five space separated tokens
of the form Xs, with X being the rank (‘2’ . . . ‘9’, ‘T’, ‘J’, ‘Q’, ‘K’ or ‘A’) and s being the
suit (‘c’, ‘d’, ‘h’ or ‘s’).

Output

Per testcase:

• One line for each starting hand with a floating point number that is the maximal ex-
pected reward for that hand. These numbers must have an absolute or relative error
less than 10−6.



22 Problem K: Videopoker

Sample in- and output

Input Output

1
1 2 3 4 5 10 25 100 250
5
Ah Ac Ad As 2s
Ks Qs Js Ts 2h
Ks Qs 2d 2h 3s
2d 4h 5d 3c 9c
2h 3h 6d 8h Tc

25.000000
8.9574468
1.5467160
0.9361702
0.6608135

Poker hand rankings

For those of you not familiar with the game of poker, here follow explanations of the different
poker hand rankings:

• “one pair”consists of two cards of the same rank and three unmatched cards, e.g. Ah
As Tc 8h 2c;

• “two pair” consists of two cards of the same rank, two cards of a different same rank
and an unmatched card, e.g. Ah As Th Ts 3c;

• “three of a kind” consists of three cards of the same rank and two unmatched cards,
e.g. Kc Kh Ks 6c 5s;

• a “straight” consists of five cards of sequential rank in more than one suit, e.g. Jd Ts 9c
8d 7h. The ace can be used as low or high card, so straights from ace to five and from
ten to ace can be formed;

• a “flush” consists of five cards of the same suit, that are not in sequential rank, e.g. Ks
Qs 8s 5s 3s;

• a “full house” consists of three cards of the same rank and two cards of a different same
rank, e.g. Js Jh Jc 4s 4c;

• “four of a kind” consists of four cards of the same rank and an unmatched card, e.g. 7h
7c 7s 7d 5c;

• a “straight flush” consists of five cards that form both a straight and a flush and that is
not a royal flush, e.g. 7h 6h 5h 4h 3h;

• a “royal flush” consists of five cards that form both a straight from ten to ace and a
flush, e.g. As Ks Qs Js Ts.


